A novel splice variant of GLI1 that promotes glioblastoma cell migration and invasion.

نویسندگان

  • Hui-Wen Lo
  • Hu Zhu
  • Xinyu Cao
  • Amy Aldrich
  • Francis Ali-Osman
چکیده

The family of GLI zinc finger transcription factors regulates the expression of genes involved in many important cellular processes, notably embryonal development and cellular differentiation. The glioma-associated oncogene homologue 1 (GLI1) isoform, in particular, has attracted much attention because of its frequent activation in many human cancers and its interactions with other signaling pathways, such as those mediated by K-RAS, transforming growth factor-beta, epidermal growth factor receptor, and protein kinase A. Here, we report the identification of a novel truncated GLI1 splice variant, tGLI1, with an in-frame deletion of 123 bases (41 codons) spanning the entire exon 3 and part of exon 4 of the GLI1 gene. Expression of tGLI1 is undetectable in normal cells but is high in glioblastoma multiforme (GBM) and other cancer cells. Although tGLI1 undergoes nuclear translocalization and transactivates GLI1-binding sites similar to GLI1, unlike GLI1, it is associated with increased motility and invasiveness of GBM cells. Using microarray analysis, we showed >100 genes to be differentially expressed in tGLI1-expressing compared with GLI1-expressing GBM cells, although both cell types expressed equal levels of known GLI1-regulated genes, such as PTCH1. We further showed one of the tGLI1 up-regulated genes, CD24, an invasion-associated gene, to be required for the migratory and invasive phenotype of GBM cells. These data provide conclusive evidence for a novel gain-of-function GLI1 splice variant that promotes migration and invasiveness of GBM cells and open up a new research paradigm on the role of the GLI1 pathway in malignancy.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

P157: Periostin Recruits Tumor Associated Macrophages in Glioblastoma Multiform

Glioblastoma multiform (GBM) is the most common and lethal type of primary brain tumors with high rates of morbidity and mortality. Treatment options are limited and ineffective in most of the cases. Epidemiological studies have shown a link between inflammation and glioma genesis.  In addition, at the molecular level, pro-inflammatory cytokines released from activated microglia can increa...

متن کامل

Identification of Spata-19 New Variant with Expression beyond Meiotic Phase of Mouse Testis Development

Background: The study of specific genes expressed in the testis is important to understanding testis development and function. Spermatogenesis is an attractive model for the study of gene expression during germ cell differentiation. Spermatogenesis associated-19 (Spata-19) is a recently-identified important spermatogenesis-related gene specifically expressed in testis. Its protein product is in...

متن کامل

EMT related lncrnas’ as novel biomarkers in glioblastoma: a review article

Glioma is the most common type of brain tumor and according to the 2016 WHO classification, based on invasion level, it is divided into four categories. The most severe and invasive type is grade IV glioma or glioblastoma (GBM), which has a very poor prognosis and a survival rate of only 15 months. However, the molecular pathway of invasion in malignant glioma tumors has not yet been clearly el...

متن کامل

تأثیر آدنوزین ´5تری فسفات در القای آپوپتوز و مهار بیان ژن Survivin و واریانت پیرایشی ضد آپوپتوزی SUR-3B آن در سلول های K562

Introduction: Leukemia is a heterogeneous malignant disease in which progression at the level of CD34+ cells has a major impact in drug resistance and relapse. The multi-drug resistance gene product, P-glycoprotein is an inhibitor of apoptosis proteins (IAPs), such as Survivin that are expressed simultaneously with several putative drug resistance parameters in CD34+ leukemia cells. In fact, IA...

متن کامل

Identification of a Novel Splice Site Mutation in RUNX2 Gene in a Family with Rare Autosomal Dominant Cleidocranial Dysplasia

Introduction: Pathogenic variants of RUNX2, a gene that encodes an osteoblast-specific transcription factor, have been shown as the cause of CCD, which is a rare hereditary skeletal and dental disorder with dominant mode of inheritance and a broad range of clinical variability. Due to the relative lack of clinical complications resulting in CCD, the medical diagnosis of this disorder is challen...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Cancer research

دوره 69 17  شماره 

صفحات  -

تاریخ انتشار 2009